What’s Shaking with Orion?

In mid-October, NASA released an update regarding the Orion spacecraft.  Orion underwent a series of tests ensuring it could withstand the intense vibrations it will experience when it is launched and travels to space atop the Space Launch System (SLS) rocket.  One of the tests involved ‘shaking’ it on the world’s most powerful vibration table; the table is 22-feet wide and 55,000-pounds.  These tests were conducted by engineers at NASA Glenn’s Plum Brook Station in Sandusky, Ohio.

Throughout the summer, engineers conducted a total of 98 vibration tests on Orion.  As NASA mentioned, despite that they designed “Orion and its service module to endure launch and ascent vibrations as Orion travels into space,” it is critical to test on the ground to “verify those designs before the mission.”

According to Jerry Carek, the facility manager at the Sandusky station, “We started at about 20 percent of the maximum test level and gradually worked our way up to 100 percent with vertical movement. Then we did the same thing with lateral movement.”

The vibration tests were in coordination with a series of tests Orion will have to endure before launching on its first journey atop the SLS rocket, in which it will venture tens of thousands of miles beyond the moon, as part of the Exploration Mission-1 (EM-1).  The next stop for Orion is “the assembly high bay area, where engineers will fire pyrotechnics to simulate the shocks the service module will experience as Orion separates from the SLS rocket.”

EM-1 is set to launch from the Kennedy Space Center in late 2018.

Read more here.



A Basic Overview of NASA’s Space Launch System

A brief overview of NASA’s Space Launch System.

For the first time in nearly forty years, NASA completed their first critical design review for a human-rated launch vehicle.  This was for their Space Launch System (SLS), a new powerful, and highly advanced launch vehicle.  The purpose of SLS is to stay relevant with the new era of human space exploration beyond Earth’s orbit.  SLS will launch crews of up to four astronauts in the Orion spacecraft on missions focused on exploring multiple, deep-space destinations.  Due to its greater payload mass capability, volume capability, and energy to speed missions through space compared to other current launch vehicles, SLS will have the capabilities to be flexible and evolvable, thus offering new opportunities for payloads, including robotic scientific missions to places such as Mars, Jupiter, and/or Saturn.

Screen Shot 2016-09-22 at 11.12.45 PM.png

courtesy of nasa.gov

According to NASA, the initial block configuration of SLS, as shown above, will stand 322 feet tall, higher than the Statue of Liberty, and weigh 5.75 million pounds when fueled.  It will produce 8.8 million pounds of thrust at liftoff, the equivalent of more than 160,000 Corvette engines.  In comparison to Saturn V, the last exploration-class launch vehicle first utilized in 1966, SLS will provide 15 percent more thrust at launch, and will carry more than three times the mass of the space shuttle.

Engineers are aiming to deliver the first SLS rocket in 2018 to NASA’s Kennedy Space Center in Florida.

For further information regarding SLS, visit: http://www.nasa.gov/sls/


Above information and graphics were found on NASA’s SLS Fact Sheet from 2015: http://www.nasa.gov/sites/default/files/atoms/files/sls_october_2015_fact_sheet.pdf